Genetic engineering of human stem cells for enhanced angiogenesis using biodegradable polymeric nanoparticles.
نویسندگان
چکیده
Stem cells hold great potential as cell-based therapies to promote vascularization and tissue regeneration. However, the use of stem cells alone to promote angiogenesis remains limited because of insufficient expression of angiogenic factors and low cell viability after transplantation. Here, we have developed vascular endothelial growth factor (VEGF) high-expressing, transiently modified stem cells for the purposes of promoting angiogenesis. Nonviral, biodegradable polymeric nanoparticles were developed to deliver hVEGF gene to human mesenchymal stem cells (hMSCs) and human embryonic stem cell-derived cells (hESdCs). Treated stem cells demonstrated markedly enhanced hVEGF production, cell viability, and engraftment into target tissues. S.c. implantation of scaffolds seeded with VEGF-expressing stem cells (hMSCs and hESdCs) led to 2- to 4-fold-higher vessel densities 2 weeks after implantation, compared with control cells or cells transfected with VEGF by using Lipofectamine 2000, a leading commercial reagent. Four weeks after intramuscular injection into mouse ischemic hindlimbs, genetically modified hMSCs substantially enhanced angiogenesis and limb salvage while reducing muscle degeneration and tissue fibrosis. These results indicate that stem cells engineered with biodegradable polymer nanoparticles may be therapeutic tools for vascularizing tissue constructs and treating ischemic disease.
منابع مشابه
Paracrine release from nonviral engineered adipose-derived stem cells promotes endothelial cell survival and migration in vitro.
Stem cells hold great potential for therapeutic angiogenesis due to their ability to directly contribute to new vessel formation or secrete paracrine signals. Adipose-derived stem cells (ADSCs) are a particularly attractive autologous cell source for therapeutic angiogenesis due to their ease of isolation and relative abundance. Gene therapy may be used to further enhance the therapeutic effica...
متن کاملTherapeutic angiogenesis using genetically engineered human endothelial cells.
Cell therapy holds promise as a method for the treatment of ischemic disease. However, one significant challenge to the efficacy of cell therapy is poor cell survival in vivo. Here we describe a non-viral, gene therapy approach to improve the survival and engraftment of cells transplanted into ischemic tissue. We have developed biodegradable poly(β-amino esters) (PBAE) nanoparticles as vehicles...
متن کاملBiodegradable Polymeric Nanoparticles Show High Efficacy and Specificity at DNA Delivery to Human Glioblastoma in Vitro and in Vivo
Current glioblastoma therapies are insufficient to prevent tumor recurrence and eventual death. Here, we describe a method to treat malignant glioma by nonviral DNA delivery using biodegradable poly(β-amino ester)s (PBAEs), with a focus on the brain tumor initiating cells (BTICs), the tumor cell population believed to be responsible for the formation of new tumors and resistance to many convent...
متن کاملEffect of Nanoclay Addition on the Properties of Polycaprolactone Nanocomposite Scaffolds Containing Adipose Derived Mesenchymal Stem Cells used in Soft Tissue Engineering
Tissue-engineering scaffolds provide biological and mechanical frameworks for cell adhesion, growth, and differentiation. Nanofibrous scaffolds mimic the native extracellular matrix (ECM) and play a significant role in formation and remodeling of tissues and/or organs . One way to mimic the desired properties of fibrous ECM is adding nanoparticles into the polymer matrix. In the current study, ...
متن کاملInvestigation of Differentiated Embryonic Stem Cells Growth on Optimized Porous Polymeric Bed with Fuzzy System
Introduction: Age-related macular degeneration (AMD) is one of the retina diseases in which retinal pigment epithelium cells are degraded and lead to blindness. Available treatments only slow down the progression of it. In this study, human embryonic stem cells (hESCs) differentiated into retinal pigment epithelium cells were cultured on a polycaprolactone scaffold. Methods: The optimization o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 107 8 شماره
صفحات -
تاریخ انتشار 2010